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Section 1

INTRODUCTION

The application of linear systems theory, particularly in the context of

digital image processing, has been demonstrated to provide powerful research

approaches to a variety of problems in visual perception and human factors

engineering of displays. It has supported methodologies in symbol legibil-

ity, display image quality assessment, reduction of aircraft observables,

simulation of advanced cockpit display concepts, design of C31 displays, and

fundamental research into visual psychophysics. Digital image processing

offers the researcher a means of generating highly controlled, calibrated

visual stimuli in either hardcopy (photographic print or transparency) or

* .*, softcopy (television) formats. Linear systems methods permit the researcher

to exercise precise control over the spatial frequency content of an image.

The Human Engineering Division of the Air Force Aerospace Medical Research

Laboratory (AFAMRL) has developed a state-of-the-art digital image pro-

cessing facility to permit researchers in the laboratory, in other Air Force

agencies, and at supporting university and industrial organizations to

develop and apply digital image processing methods to current research

issues. The Visual Image Processing, Enhancement, and Reconstruction

(VIPER) facility continues to support the Optical Countermeasures and Decep-

tion, Radar Information Transfer Systems Analysis, C3 Operator Performance

Engineering, Strategic Avionics Crewsystem Development Engineering Facility,

Windscreen Assessment, and Aviation Vision research and development programs

within AFAMRL.

VIPER consists of an International Imaging Systems Model 70 image processing

system hosted on a Digital Equipment Corporation PDP 11/45 equipped with

dual disk and dual tape drives and operating under RSX-11M. Image quantiza-

tion is performed using a digitizing tablet, a television camera, or an

Eikonix Corporation digitizer. Hardcopy output is produced by either a

Matrix Corporation or a Dicomed Corporation film recorder. Softcopy dis-

plays are presented on a variety (Tektronix, Conrac, SRL, Aydin) of color

CRTs. A schematic outline of the facility and its capabilities is depicted

- in Figure 1.
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Linear systems methods of spatial filtering are employed in VIPER to

accomplish a variety of research objectives. Generally, these objectives

are divided among three broad classes. Images are analyzed to determine

various correlates of information content (i.e., image quality assess-

ment). Images are spatially filtered so as to exhibit precise physical

characteristics (i.e., stimulus generation). Images are reconstructed wit

specified physical characteristics emphasized (i.e., image enhancement).

In order to accomplish the specific research objectives at hand and to make

effective use of a highly-interactive image processing capability such as

VIPER, the investigator must be able to determine what processing should be

4 performed and to evaluate how well a processed image satisfies his needs.

An appreciation of Fourier transform-based image processing methods is

clearly required of investigators in perception, sensor/display design,

image quality evaluation, bioengineering, and the host of other disciplines

that can exploit the power of Fourier analysis in designing and carrying out

system simulations and operator performance studies.

The most logical approach to Fourier analysis is through a discussion of

* periodic functions. A periodic function of time is one that had its

beginning in the infinite past, and will continue into the infinite

.4 future. Furthermore, a periodic function consists of a single pattern vani-

ation repeated endlessly over the function's doubly-infinite duration. This

single pattern has the duration T, called the period of the function. An

example function is portrayed in Figure 2. We note that T, the period,

separates the starting times for the pulses (or the ending times, or the

pulse centers, etc.). Any physical significance could be assigned to this

function. For instance, the pulses could represent the time each day that

the reader is at work; the absence of a pulse would then mean that the

reader was otherwise occupied. This example (or any other) immnediately

discloses two problems with the definition of periodic temporal functions.

They are:

* 8
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1. A phenomenon must be under careful control to be such that each

individual pattern (cycle) is exactly like every other one, in

every respect.

2. No known phenomenon extends into the infinite past, or can be

expected to extend into the infinite future.

The first problem can be handled by assuming that there is only one cycle or

period of the functional variation, and that means are provided to have it

occur repetitiously. The second problem, a philosophical one, can be dealt

with by saying that if a large number of cycles of variation are allowed to

occur (the phenomenon occurs over many periods), then the function can be

successfully treated as if it were periodic. This treatment is not uncom-

A mon; inspuction of a camera lens will disclose that the setting for infinite

range is very close to that for 15 feet, and 15 feet is many times the focal

* length of the lens system. With this interpretation, Fourier analysis
"1works" very well.

It is postulated that any "periodic" temporal function, subject to the above

constraints, may be represented as a linear combination of simpler periodic

functions, having periods T1, T2, -. , Tn, where

T = nTn,

or all but one (n = 1) of the functions have periods shorter than the period

of the function under investigation. This linear combination is generally

described as the infinite sum of a weighted set of basis functions, the set

of basis functions being the set of "simpler periodic functions." An intui-

tively important set of basis functions is the sinusoids, or acoustically

speaking, the "pure tones," since their combination with various weightings

serves to assist us in classifying musical instruments (and artists) when a

sustained ("periodic") sound is generated. From above, the case n = 1 is

called the fundamental tone, and all larger values of n correspond to nth

harmonics. This simple connection cannot be made for other sets of basis

functions.
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It is also true, one notes, that when a musical instrurient produces other

than a sustained sound, a dynamic combination of tones is produced, the

description of which is more easily given in terms of the frequencies

present (frequency = T-1) than in terms of any temporal mathematical expres-

sion. Suha case is usually described mathematically in terms of fre-

quency, but as a continuous function, rather than the discrete linear sum

described for periodic functions. One is thus able to distinguish between

passages played solo on a French horn, and the same passages played on an

oboe, by virtue of the "spectral characteristics" (frequency content), even

though the sounds produced are not sustained nearly long enough to be

treated as periodic. Thus, while no single-frequency tone is present, one

can intuitively accept the description in terms of frequency. This tech-

nique of analysis is comm~only used, and is related to the use of the sinu-

soidal set of basis functions in periodic analysis.

Finally, two-dimensional phenomena of many types have descriptions in terms

of frequencies, except that the frequencies are not measured per second
(T-1) but per unit of distance (X1). These frequencies are termed "spatial

frequencies." One thinks of venetian blinds; some have wide slats, some

have narrow slats; the visual impressions obtained when looking through

partially-open blinds can be quite different, or even pleasant or unpleas-
a,.. ant. Some "light show" phenomena also demonstrate the effect. For impor-

tant two-dimensional phenomena, analysis in terms of spatial frequencies is

the only suitable approach, since the spatial details vary rapidly; one

thinks of comparing the visual distribution on a television display to a

musical passage. The source of psychophysical stimulation is the dynamic

time-variation. Thus, for the television display, a meaningful mathematical

analysis must be in terms of the spatial frequency content or capability.

The arguments given here in favor of analysis in terms of frequency content,

temporal or spatial, are meant to be both intuitive and compelling; the

-. technique is generally called Fourier analysis. The concepts, it has been

argued, are quite simple; the analysis, it is admitted, can be cumbersome.

The ideas given here are expressed mathematically in the following section,

for the reader's convenience. The remainder of the material is presented in

such a manner as to be useful without emphasis on mathematical descriptions.
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Section 2

ANALYTIC BACKGROUND

Given a periodic time function, f(t) such that

f(t) = f(t ± nT) for any integer n (1)

where T is the period of the function, the longest time interval over which

the function does not replicate itself, as shown in Figure 1, then
a 0

f(t) = -+ E [an cos nwot + bn sin nwot ]  (2)
n=1

where

210 =T-= 2w f (3)

where f is the Hertzian frequency (cycles per second) and w0 the radian

frequency (radians per second).

The coefficients may be evaluated from the given f(t) by:

a0 1
2 f f(t) dt = average value of f(t) (4)

2 T "("
T

2 T
na 2 T f(t) cos nwot dt (5)

bn 24 7 f(t) sin nwot dt (6)

An alternate form is given by

Go) jnwt

'a'..12

,...



where

C 1 f(t) dt (8)
T T T

For functions of physical significance, it is assured that, for sufficiently

large values of n, the coefficients an, bn, and cn are monotonically

decreasing functions of n. Thus, if the tone produced by a baroque organ

were taken as f(t), the components or "harmonics" close to the fundamental

tone (n = 1) might be large (i.e., an and bn, or cn), but as n increases,

the magnitude of each successive harmonic is lower than the last one, until

finally inaudible to the human ear. One might observe that the harmonic

content of the tones produced by an organ are much more convenient

descriptors of the organ than an expression for f(t) to go with each tone.

As an example for reference, consider the periodic function of Figure 1:

A, -x < t < x
f PMt T=  (9)

0, otherwise, - < 7 (9

Thus,

an 2 f(t) cos nwot dt !-A. cos nwtdt
x

_2A Ix _4A
7. n(o3 sin n ot x -- sin nwOx

0 ~ n 0T

- (10)

13
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T f
bn  2 2 ff(t) sin nwo t dt AI - sin nwot dtn T 0 T j

T -x

2A -o -cos nwo  - -0 (1

nW0T Jl-X

1 T "-nwOt  t fx -jnwot d
Cn  f(t) dt =TAt dt

-~ -x

'F si l
A -Jnwot Ix  2Ax sin nwox (12)

,0 n 0 -T

Here, the zero value for bn is a consequence of symmetry, and the

coefficient values (harmonic amplitudes) an and cn depend on the function

an 2Ax sin nw0x(

and 
0

2Ax t 1( sin nw x)

f(t) + 2 _ ) cos nwt (14)

-- -= nx [sin- noX] jnwot ( s1 15
T n.. nw0x I

."  Now, since

nw...n 2(4) (16)

2x
°.-nwOx X nn

Li'-

~2x
we see that the quantity _-. sometimes called the "duty cycle" for a

rectangular pulse, determines the harmonic structure for the function.

A strategy of some utility is to plot the function cn versus the variable

w . Since cn is nonzero only for integer n, the plot is of a discrete

14



function, having nonzero values only at the harmonic frequencies, as shown

in Figure 3. The plot of Figure 2 now depicts a "time-domain" description

of fp(t), while Figure 3 depicts a "frequency domain" description.

In an analysis of a periodic function for serious purposes, obtaining an

infinite-series representation is a step of questionable progress. Thus, it

is usually concluded that all harmonics higher than the Nth (where N is

usually selected, but sometimes calculated) are of negligible amplitude and

are eliminated. The series is said to have been truncated, and the new

function is said to be band-limited. That is, no harmonics are present

outside the band of frequencies,

-NW0  f W t N0

This simplification seems arbitrary, but is actually the source of only

small errors in many physical problems. The concept of band-limited func-

tions is very important in Fourier analysis.

Given these concepts related to periodic functions, it is a simple matter to

conclude, in view of common experience, that nonperiodic functions of time

have associated with them a description in terms of frequency. The human

voice is an excellent example of this, in that spoken conversation is not

periodic, but can be categorized by its frequency content (i.e., "male

voice" versus "female voice," etc.). Furthermore, many important physical

time functions that are not periodic are band-limited, as is the human

voice, and can be treated as such, for instance in the design of telephone

systems.

The mathematics of this situation are done using the Fourier transform,

F(jw) = J[f(t)] =J f(t) £-jwt dt (17)

F(jw) = A (A) dje(W) (18)

15
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It should be noted here that the radian frequency, w, is a continuous

variable, as opposed to the discrete nwr encountered in the analysis of

periodic functions.

As en example, let us define f(t) from Figure 2 such that

(A, -x 4 t 4 x
f(t) = ((19)

0, otherwise, for all time

Thus, this function is not periodic, but consists of a single rectangular

pulse. Now,

/" x -Jwt
F(jw) = (t) C- j t dt = A dt

A e-jwt Ix  2A snw
-jw -= 2Ax[sin wx

i= 2Ax sin WX (20)

The similarity to Equation (12) is obvious; Equation (20) is depicted by the
"envelope function" of Figure 3, with normalized T.

The calculation of F(jw) for typical mathematical functions is often easily

accomplished. Similarly, operations in the time domain can be shown to have

equivalent (and, in many important cases, simpler) operations in the fre-

quency domain.

Two-dimensional functions or spatial functions exist which are not time-

varying, but which can be described in terms of their spatial extent,

especially in terms of their extent within the field-of-view (FOV) of an

instrument, or observer. For instance, if this printed sheet of paper is

viewed by a human observer in an otherwise-black FOV, then:

1. If only one letter falls in focus within the FOV, it is easily

recognized, and corresponds to a low spatial frequency phenomenon

(i.e., not a lot Is happening per unit angle in the FOV).

71
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2. If only one word falls in focus within the FOV, it is also easily

recognized, and corresponds to a higher spatial frequency

containing more information.

3. As the viewer distance increases, the entire page can be read,

then only black lines on the white page are discernible, then the

page appears as a white rectangle, a "dot," and finally nothing.

Thus, our sight/perception mechanism is determined by spatial frequencies,

as our hearing/perception mechanism is determined by temporal frequencies.

We are surrounded by physical temporal/hearable phenomena that we cannot

hear because of the band-limited response of our ears. We are surrounded by

physical spatial/seeable phenomena that we cannot see, because of the band-

limited response of our eyes. Changes in our position relative to the

phenomena may or may not change the situation. It would seem to be

appropriate to apply the ideas of Fourier analysis in the two-dimensional

case involving linear processes, because of the historical successes

obtained with that technique. Thus, the two-dimensional Fourier transform

is defined:

.[f(xy)] = F jwl, J2 ) fDfO f(x,y) - j I x  dxdy

(21)
JB~wml) J$1W2 )

= A (w1 , w2 ) ( e (22)

where

w, is the spatial frequency associated with variations in the

x-direction, and

w2 is the spatial frequency associated with variations in the

y-direction.

For instance, we may consider a single white letter A formed in a 5 x 7

format in an otherwise black FOV, depicted in Figure 4.

18
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6.

DX

Figure 4. Block Letter in a 5 x 7 Format

In the x-direction, there are two lines per five spatial units, while in the

y-direction, there are two lines per seven spatial units. Thus, lower fun-

damental spatial frequencies are associated with the longer dimension of the

figure, and higher fundamental spatial frequencies are associated with the

shorter dimension of the figure.

At this point, we may list characteristics of the transform of

Equations (21) and (22) which are necessary for general utility.

19
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1. #[Kf(x,y)] = k [if(x,y)] (23)

Thus, only the relative brightness or density should be involved

in determining the transform characteristics. The absolute

brightness or density represents merely a multiplicative constant.

2. The transform should possess characteristics that are invariant

under translation in the FOV.

3. The transform should possess characteristics that are invariant

under rotation in the FOV.

The transform given possess all these characteristics and more, as will be

shown.

As an example, consider a rectangular solid of height A and base 2b x 2b,

situated with the base centered in the x-y plane. Then

I[f(xy)] = F (Ji 1 , jw 2 ) - A E dxdy
-b -b (4(24)

A -j 1 x b JW2Y lb

(jw) (-jw2 ) C -b E -b (25)

I _ 4A
4 A-sin wlb sin w2b (26)

= A2 sin w b ~jsin w b1
4bb2J1 w 2b (27)

One notes that 4Ab2 is the volume of the solid, and that the remainder of
the expression is the same as we have associated with rectangular temporal

4 .pulses, except that it is also two-dimensional. There is, thus, a thread of

unity established among the various functional renditions to which Fourier

analysis is applied.

20
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Finally, it must be noted that the Fourier analysis described above does not

lend itself to machine (i.e., digital computer) implementation because of

the implied continuity of the functions, and of the Lebesgue integrals. To

circumvent this difficulty, another function has been defined--the discrete

Fourier transform (DFT). In the use of this transform, the function of

time, f(t), or of position, f(x,y), is assumed to be "sampled" or evaluated

only at discrete points over its domain. The transform operation, which is

generally done by a computer or specialized processor, then produces another

set of discrete points in the appropriately-dimensioned frequency domain

which generally approximates samples of the Fourier transform of the

original continuous function. The "goodness" of the approximation depends

on many things, but largely on the number of samples of the original func-

tion that are obtained. As the number of samples increases, the approxima-

tion improves; the calculation time also increases, of course, along with

the requirement for machine memory.

To alleviate these problems, the fast Fourier transform (FFT) is generally

the one that is machine-implemented; it is merely an algorithm for computa-

tion of the DFT using special techniques to reduce the time (in the machine)

required for the calculation. An explanation of these transforms is beyond

the intended scope of this document.
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Section 3

THE VIPER CAPABILITY

The Visual Image Processing, Enhancement, and Reconstruction (VIPER)
laboratory facility includes an 12S Model 70E and DEC PDP 11/45 combination,

with outstanding capabilities for digital image processing. With thisIII equipment grouping, it is possible to display a visual image on a CRT,
obtained from:

A0 a video camera
* a video tape

* computer storage, or

* computer generation

and modify the image to suit the purposes of the experimenter. The

apparatus is capable of then doing a two-dimensional FFT of the image, pro-

viding the output information points as real part and imaginary part, or

magnitude and phase. A map of the output (real part, imaginary part, magni-

tude, or phase) one parameter at a time, full screen can be displayed, and

reproduced immediately on PolaroidCv prints, or, with processing delays, in a

number of other formats, including pseudocolor--enhanced images! That is,

the input image is presented in the x-y plane on a CRT display. After two-

dimensional transformation, two quantities correspond unambiguously to each

single original point. In a planar, or two-dimensional display, these

derived quantities can be presented, full screen, only one at a time. By

using split-screen techniques, however, the parameters can be displayed
simultaneously. The input image must be static, because the time required

for the transformation is not negligible. Dynamic transformation of a

running video tape, for instance, is not possible.

Several definitions must be made in preparation for two-dimensional fast

Fourier transform (2DFFT) processing. They are:

1. The field-of-view size, in pixels.
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2. Th imag size in pies (It is freunl convenient no to

fill the entire field-of-view with image of interest for 20)FFT
processing, as some of the higher spatial frequencies may he

lost.)

3. The relationship between image brightness and the quantity that it

represents (object height, strength, etc.).

4. Any effects that might be produced because the image pixels do not

occur at uniform spacing.

5. All the same parameters must be accounted for in the output

images.

It should be noted that, while the pictorial output transformation is

extremely informative and convenient for purposes of interpretation, the

video and photographic processes may contain uncontrolled variables, which

-. can give rise to phenomena for which there is no accounting. Thus, if

accurate data on a transformation is required, a numerical printout is

* available from the system, and should be used. In this process, one truly

becomes familiar with the staggering volume of data generated, and the

difficulty involved in interpretation. Thus, one may ise the pictorial

size of printout that must be actually analyzed.

- For a simple example, an approximation to the unit-impulse function is

selected. The approximation consists of one white pixel in an otherwise-

- black surround of 128 x 128 pixels. This function is defined as

* 6 (x - x0, Y - YO), where

6 (x - x0 , Y - YO 0 for x x x0 and y *yo

and

23



" '; ~fXo,+E fy+

J j _ 6 (x - x0 , y - Yo) dxdy = 1

X0 _1 y0-o

The unit impulse function is, thus, defined as a function of infinitesimal

width, infinite magnitude, and unity volume. It may be compared to an ideal

point source, for instance, using the definition,

F (jwl, iw2 ) : 6 (x - X0 , y - yo) e dxdy

-(28)

-Jwixo -j 2yo
. e (29)

The 2DFTT has been performed for several values of xo, all with yo= 0.

The remaining figures consist of four photographs each of which, when taken

1. as a whole, is called a "Pictorial Transform Study" of the image named in

the title. All photographs within a figure have been made with the same

scale factor, as measured in pixels. In each figure, the upper left frame

is a photograph of a computer-generated rendition of the image under

study. The upper right frame is a photograph of the magnitude of the 2DFFT

of the image under study. The lower left frame is a photograph of the phase

of the 2DFFT of the image under study. The lower right frame is a photo-

graph of the power spectral density (PSD) of the image under study, with the

(0,0) value arbitrarily set equal to zero. This value represents the aver-

age brightness of the image within the FOV, and will ordinarily be large in

comparison with other values in the domain since no negative brightness

values are permitted. Most images would, therefore, appear to have all the

power associated with them concentrated at "D.C." The information sought is

at other points in the distribution. The "Pictorial Transform Study" set of

photographs, thus, contains the maximum amount of information that can be

-- associated with the image under study by the methods being employed here.

For x 0 O, yo 0,

F (jw 1 Jw2 ) = 1 (30)

,24
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as shown in Figure 5. Here, and in all that follows, the upper left photo

is a "picture" of the image to be processed. Clearly, there is a single

white pixel at the center of this frame, which corresponds to 6(x,y), the

case in which x0 = yo = 0. The upper right frame is the magnitude of

modulus of F (Ju 1 ' Jw2 ) written upper right frame =

IF (Jl, jw2 )I = A (w1 2) (31)

Lower right frame = (wl) + * (w2 ) (32)

where the notation is taken from Equations (21) and (22). Thus, in
Figure 5, the impulse is shown in the upper left frame. The magnitude (1)

is shown in the upper right frame, in which the assignment has been made

white = 1, black = 0. Any irregularities or variations that are detected

have entered during film processing, or during printing. The lower left

frame depicts the phase which is in this case zero, and the assignment 00

gray has been made. The lower right frame depicts the power spectral den-

sity (PDS), which is the square of the magnitude of F (jW1, jW,2 ), with the

value at w, 0, w2 = 0 set equal to zero, since this value is frequently

large enough to "swamp out" the other values.

In Figure 6, x0 = 4 pixels, yo = 0. In the upper left frame, the single

white pixel can be seen to be in the center vertically, but slightly dis-

placed to the right horizontally, when compared to Figure 5. As previously

discussed, A(wl, w2 ) is exactly the same as in Figure 5, as is the PSD, of

course. However, the phase now shows a strong variation, where the range

has been set as follows:

0 (WI) = -1800 = - w rad. + black

a (Wi) = 00 = 0 rad. + gray

0 (Wl) =1800= r rad. white

25
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Thus,

• i :F (Jwl, JW2 = ~ 1 0"~ l

, 2 ) (33)

where x0 = 4 pixels.

In Figure 7, x0 = 28 pixels, yo = 0. Again, the transform magnitude and PSD

-*44 remain the same, while the phase undergoes another drastic change in nature.

Finally, in Figure 8, x0 = 60 pixels, Yo = 0, and the same phenomena are
noted.

From the above, one might be tempted to generalize as follows:

F (jw1, jW2 ) = K [A (wI' W2)] 6ie(wl) j*(w2 ) (34)

where:

K tells us "how much" exists.

A (w1 ,w2 ) tells us what the shape is, and

0 (wl) + 0 (w2) tells us "where" the shape is within the FOV.

This generalization can be used carefully, with the knowledge that it is

incorrect, since A (w 1 , w2 ), 8 (wj1 ), and * (w2 ) are not independent func-

tions, but depend, one on the others in a complicated relationship.

In Figures 5, 6, 7, and 8, no variation in 0 (w2 ) is present. That is

-- because yo = 0 in all cases. In general, both A (wl, 2) and 0 (w), * (N2 )
vary throughout the w, - a2 plane. A good example of this variation is

provided by the calculations in Equations (24) through (27) for a rectangu-

lar solid situated with its base centered in the x-y plane. Figure 9

depicts the results of that calculation for a base size of 35 x 35 pixels

(b = 17 pixels) and a height, or brightness of A. The calculated result was

28
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2' [sin WI b -in w 2b
F (jwl, Jw2) = 4Ab2  b [ b (35)

Here, K = 4Ab 2 has been scaled for the machine, and is not directly

retrievable. However,

sin w [ sin w b1
A Wl 2) = [si w ] 2b J(36)

* is very clearly shown, especially along the w, - w2 axes. The off-axis

components have been attenuated by the photographic procedures. However,

Phase =: 1 + Lw2 ) = 0 gray or w + white

is very well depicted for all of the w1 - w2 plane contained in the frame.

This pheonmenon will be noted for most figures of any complexity; that is,

the phase information will be retained photographically with Ruch better

fidelity than the magnitude information.

In Figure 10, the same square has been displaced by 17 pixels in the +y

direction (i.e., x0 = 0, yo = 17 pixels). The magnitude remains unchanged,

the phase variation in the w1 (corresponding to x) direction remains

unchanged, but a linear phase variation in the w2 (corresponding to y)

direction is evident. The corresponding transform expression is

(1 -j iYo [sin wib [sin 42 b]
F (Jol' Jw2 ) = n A b  w2  (37)

In Figure 11, the same square has been displaced by 17 pixels in the +x

direction (i.e., x0 = 17 pixels, yo = 0). Again, the magnitude function is

unchanged, as is the w2 phase variation (from Figure 9); however, a linear
phase variation in the w, (corresponding to x) direction is evident. The

corresponding transform expression is

F (Jwl' jw2 )  4Ab 2 S _  [ b s w2b] (38)

* 3
32
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Finally, in Figure 12, x0 =yo 17 pixels, and the phase variation appears

to be extremely complicated, while the remaining variables exhibit familiar

properties. The corresponding transform expression is

W x0  w2YIO
1 0 J

F jw1, jw2J 4Ab2 CE_ 2 [sin w 1b] Linw2b] (39)

The transform is invariant under translation, only in its magnitude. Phase

variation under translation may be described as strong.

Rotation of the square is depicted in Figure 13a, the angle of rotation,

45 degrees, not being to a symmetry axis of the display pixels. 'or that

reason, the square edges are not smooth, and some size scaling was

required. While the square is still approximately the same size within the

FOV, each side of the square is 25 pixels, rather than 35. The square is

centered in the x-y plane. The magnitude information appears to have been

rotated, also by 45 degrees. The phase information, however, is not the

same as that of Figure 8 rotated by 45 degrees, although on lines corre-

sponding to the rotated w,- w2coordinate system, the approximation to

simple rotation is good. It can, thus, be concluded that image orientation

within the x-y place is extremely important, especially when the field-of-

view is held constant. One might anticipate that a similarly rotated square

in a 256 x 256 pixel surround would, by virtue of superior sample spacing,
produce results more like those desired, as depicted in Figure 13 (this

represents a small increase in performance for a substantial increase in

computation size).

An excellent image for further investigation of this problem is the circle,

itself insensitive to rotation, and also not capable of faithful rendition
in a field of 128 x 128 pixels, as depicted in Figure 14. The transform of

this figure should be a bright circular disk in the center, surrounded by

* alternating rings, as shown in the magnitude plot. The phase plot should be

similar, with alternating gray (phase = 0) and white (phase i)rings, each

of the same radial thickness, and of smooth circular shape. Inspection of

the phase frame shows that the rings are never smoothly circular and, as one

5%5I'.'35
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progresses outward from the center, the "rings" cease to be true rings, but

begin to show a structure, indicating that the original image is not truly

circular. Here, the frequency corresponding to radius in a w- * plane, the
transform is a Bessel function, as in the optical Airy disk:

F (j) J1) (40)

In this section, the analytic background of 2DFFT image processing has been

introduced, and the evaluation of gross transform properties has been used

to confirm the general correctness of the results obtained. However, cer-

tain limitations that may be imposed by the field-of-view in which the image

is observed have been disclosed, to place the esrtwhile experimenter on

guard when formulating the imagery to be processed.

40
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Section 4

PICTORIAL TRANSFORM ANALYSIS

The VIPER photographic output consists of point data that are obscured by

film characteristics and processing. The system includes provisions for

"blowing up" the pictorial output so that each original pixel of data

occupies several pixels in a square array. However, in using this process,

higher frequency components are "lost" (i.e., not present on the photograph

if the output array is held to the size of the input array), so that this

technique also has its disadvantages.

For purposes of clarification, consider a rectangular image 35 pixels high

and 7 pixels wide, centered in a 128 x 128 pixel field-of-view, as shown in

Figure 15. The 5:1 aspect ratio in the image should be preserved in the

transform.

Analytically,
.. 5

a.7' -p 
x-j y

F jw 1 9 jw2 ) = 
17 [f 3  f(x,y) El dx] E dy (41)

-17 . 3

,. where f(x,y) has been normalized to unity within the rectangle, and zero

outside.

Calculating, p

,W 3

F (Jjw J2) = I - " 2y dy (42)

17 1 X]-3
~ ~17 2[ inL m

I Fl sin 3w]cjw2y y(317 .w]dy (43)

Wj:W2- sin 3w sin 17w2 (44)

.1 2

20 [sin 3w1 ] ][sin 17 w2] (45)

-204w ~ L 17w2
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Inspection of the magnitude in Figure 15 discloses the presence of two

normal sinc functions. However, brightness falls off rapidly on the axes,

and the off-axis components are essentially undetectable. The phase "plot"

of Figure 15 is, however, relatively unambiguous. By counting phase changes

from the center of the center (largest) phase area, one finds that

7w 4 w477
2' 1 2

(46)

35 2 (17w2 .17wr

Thus, the total range of 3w, is 7w radians/display dimension, and the total

* range of 17w2 is 34.5w radians/display dimension, an acceptable preservation
* of the 5:1 ratio.

Figure 16 shows similar transform information for the same rectangle shifted

so that its center is at (0,17) pixels. The magnitude plot is identical to

the previous one, and the phase is identical in the w, - direction, as

* expected, but displays a linear phase variation in the w2 - direction, pro-

duced by the shift in the y - coordinate.

Figure 17 shows the case for the rectangle centered at (17,0) pixels. Here,

4 * the w2 variation is the same as the original (Figure 15), as is the w, mag-
nitude variation. The w, phase variation is linear, produced by the shift

in the x - coordinate.

* Figure 18 depicts the rectangle centered at (17,17) pixels. The magnitude

variation is the same as for the original (Figure 15). The phase variation

* . shows linear components in both w, and w2 directions, and has become rather

S.-; complicated, as noted previously for the 35 x 35 pixel square, similarly

displaced.

It may be concluded that, given familiarity with the image function, the
magnitude information will disclose what image is present. The phase infor-
mation will allow determination of the location of the image within the

field-of-view. Based on this generalization, a common strategy is to con-

centrate on the magnitude information and neglect the phase information, the
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location within the field-of-view generally being obvious without resort to

transform operations. This strategy is generally unwise, even though it is

correct. In truth, the magnitude information and the phase information are

not independent. Given one, the other can be determined (although perhaps

with an unacceptable level of effort). Thus, the magnitude informationI
contains data as to what, but not where, the object is. Orientation with
respect to the field-of-view can be determined. The phase information con-

tains data from which not only where, but also what image is present. It is

neglected, therefore, at the experimenter's peril.

The analysis performed here seems to be rather simple, and relatively

unproductive, in view of the quantity of data present. It is, nevertheless,

typical of, that which can be accomplished in the absence of other data. The

crucial ingredient is the skill and familiarity of the experimenter with

elemental image shapes and their transforms from which image processing

gains can be realized. Here again, a mental synthesis, from the super-

V position of shapes present, of the transform magnitude function may be
possible without undue difficulty. Not so, in general, for the phase. The

comparison of data for an unknown image with a library of data for known

images (map-matching or template-matching) can he rather more productive in
those cases to which it is applicable.

Possibly the most general attitude that could be adopted, at least with

respect to the simple images considered to this point, is that they consist

of sample arrays of impulses such as those in Figures 5, 6, 7, and 8. For

each of these functions, the magnitude function is unity, with the phase

function varying according to position. The 7 x 35 pixel rectangle is com-

posed of 245 such impulses, each with its own displacement from the center

of the field-of-view. If only the magnitude functions were considered, one
might expect the transform magnitude to be uniform over the U - U plane

with a magnitude of 245. However, the interaction ("constructive interfer-
ence," "destructive interference") pattern formed by the phase plots

* .- (possibly 35 varying only with w2; the other 203 varying with both) has the

effect of not only producing a complex phase structure, but also producing

the complex magnitude variation on the wl w 2 plane. For more general

images, not all brightness values are either one or zero, and a perceptual

'47
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q~1 decomposition in terms of an array of impulses becomes hopelessly compli-

cated. This is, nevertheless, an accurate description of the physical

process at work, as can be seen from the defining relationship in

Equation (22), repeated here:

J6(wI ) j I("2 )

.%[f(xy)] = A (wit W2) e E (47)

The modification in the magnitude function is produced by the sum of the

'4 phase functions:

e j[6 (W 1) + * (2 (48)

Analysis of this type has been accomplished in certain physical situations

with some success. In the situation being addressed here, and with a field-

of-view of 128 x 123 pixels, more than 16,000 impulse strengths and phase

patterns could conceivably be involved. Thus, a decomposition on this basis

would seem to be best accomplished over the entire array, using the 2DFFT.

Other building-block concepts may be utilized by accepting degradations in

resolution.
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Section 5
IMAGE CONSTRUCTION USING SQUARES

It would seem to be obvious that, if the pixels in a 128 x 12 3 pixels field-j
of-view are too numerous for decomposition of the image by other than

machine techniques, the alternatives are to increase the size of the elemen-

tal decomposition unit, or to decrease the number of pixels within the

* field-of-view. The approaches should, of course, produce comparable

* results.

A demonstration of a combination of these (increased elemental unit and

N reduced FOV) approaches has been accomplished, using the 35 x 35 pixel

square of Figures 9, 10, 11, and 12 as the basic image, and considering it

as, first, a 7 x 7 array of 5 x 5 pixel squares, and second, a 5 x 5 array

of 7 x 7 pixel squares. These results are shown and discussed here.

Depicted in Figure 19 are the data for a single 5 x 5 pixel square within a

128 x 128 pixel FOV. As the image is smaller than those considered previ-

ously, one notes the slower variation with spatial frequency, and the visi-

bility of off-axis lobes. With regard to the phase plate, a similar shaping

is noted. With respect to the black areas within the white rectangles, it

is noted that they denote the same phase values. The gray areas (no pun

intended) are quite well defined.

Figure 20 is for a symmetric array of five 5 x 5 pixel squares within a 15 x

15 pixel square, and Figure 21 is for a symmetric array of four 5 x 5 pixel

squares within a 15 x 15 pixel square. Because symmetry exists in the

image, it is retained also in the transforms. Furthermore, the patterns

associated with the single 5 x 5 pixel square are discernible, within which

the "structure" caused by the symmetric "arraying" of identical figures can

be attributed to a coherent interference phenomenon, the coherence origi-

nating in the transform operation, not the image. Figures 22 and 23 show
7 x 7 arrays of 5 x 5 pixel squares, again with symmetry retained in the

images, and in the transforms. The basic patterns for the 5 x 5 pixel

square are still present, but most observable, as one would anticipate, in

the phase frames. Since the sum of the images is the 35 x 35 pixel square
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(Figure 9), the sum of the transforms is the transform of the 35 x 35 pixel

square. In terms of Equation (47),

jej ( 2 ) J() j J ) = -A3 (Wl 't2 C 3 5(w :2(llj0 w

35 1 2  A2 5 (ww i, 2

+ A24 (wiw2) ejQ24(WI ) j €
24 (w2 ) (49)

It is unfortunately true that

A35  i,(w2) * A25 (wi 2 ) + A24 (wiw2) (50)

because of the coherence related to the transformation. During laboratory

experimentation, the truth of Equation (49) has been carefully verified.

The coherence and symmetry properties noted here are completely predictable,

and serve only to acquaint the reader with the significance of symmetry.

This done, the effects of simple types of asymmetry are hopefully more

clear.

For instance, in Figure 24, one white 5 x 5 pixel square has been removed

from Figure 23, in a position that maintains symmetry with respect to the

x-axis, but not the y-axis. The resulting amplitude plot is not remarkably

altered, but the haze plot change is of significant interest. Vestiges of

the phase frame for Figure 23 are clearly visible, overlying a linearly

varying component along the w2-axis, for which the given image is asym-

metric. (It must be remarked that the photographic renditions contained

herein can hardly be considered as data, having been "processed," in all

senses of that word, too many times since its origination; the reader is

encouraged to give attention to the gross aspects presented since the detail

could be misleading).

In Figure 25, two white 5 x 5 pixel squares have been removed from

Figure 23, in positions that maintain symmetry with respect to the x-axis,

but not the y-axis. In Figure 26, the two squares are removed along an axis

rotated by 45 degrees and symmetrically with respect to the center of the
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Pixel Matrix, Centered at (0,0)
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square. Finally, in Figure 27, the two sq~iar -s are rei.oved along the

rotated axis without symmetry with respect to the square's center.

The reader is urged to analyze these framies and drd, conclusions concernig

image decomposition, the relative information content .)f ,lagnitude fra:.es

and phase franies, and the detectability of the original 5 x 5 pixel patterns

in the transforms of the more complicated images.

Figures 28, 29, 30, 31, and 32 are simila- to Figures 19, 20, 21, 22, and

23, except that the 5 x 5 pixel squares have been replaced !)j 7 x 7 pixel

squares. The conclusions to be drawn are similar, and ara ,attributahle to a

scaling factor on size, if that would be useful.

The "checkerboard" format used here is not without its own significance, and

would be a viable choice in any conventional, fixed-orientation, raster-

scanning system. It could undoubtedly be tied to a two-dimensional Walsh

transformation, as well as the Fourier version, b:t with some loss if

general appeal. Its use here, however, is motivated ,iainly hy its

compatibility with the more-or-less conventional raster scan, and by the

arbitrary degree of complexity of the images which can be easily :onstructed

electronically, and transformed. The word descridtion analysis laid on the

images and their transforms is indi:ative of the recommended approach for

the experimenter not inclined to work out the mathematical expressions.
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Section 6

MORE COMPLICATED IMAGES

The images discussed so far have one characteristic in common--they have%

been composed of areas within a 128 x 128 pixel field-of-view in which each

pixel is either white or black. In the more normal case, the image would

consist of various shades of gray, varying within the image area to consti-

tute, in fact, the information contained in the image. Since it is appro-

priate to tie this situation to the images previously investigated, regular

geometric shapes have been selected, and modeled with their bases in the

plane of the image. Brightness, or gray shade, has been made to represent

height above the base, with the highest points being white. This gradual

increase in image complexity has been selected to acquaint the experimenter

with the trends to be expected in the data obtained from more realistic

images.

In Figure 33, a rectangular pyramid is presented, and the multiplicity of

symmetry axes is evident in both the magnitude and phase frames. In

Figure 34, a triangular solid is shown, and here the result of primary

interest is the phase plot. In spite of the strong intensity variation

6 ~along the x-axis in the image plane, phase variation occurs only along the

w2-axis in the transform plane, similar to that for a rectangular shape of
4' the base of the solid. Two conclusions can be drawn from this phase plot.

They are:

1. The figure is centered in the field-of-view.

2. The triangular figure produced by the intersection of the solid

and a plane normal to the y-axis produces no phase variation.

Thus, if this figure were displaced from center along the x-axis, a linear

phase variation in the wdirection would occur, similar to that observed

earlier with the displaced impulses.

Figure 35 depicts a wedge-shaped solid and, because of its asymmetry, the

linear phase variation mentioned above. In both figures, the U variation

of magnitude correctly appears to be very smooth.
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Finally, in Figure 36, a cone-shaped solid is depicted. As noted before in

- the case of the circle (or cylinder, in the present context) circularly

symmetric shapes are difficult to construct in a square format consisting of

so few pixels. Thus, in the phase frame, the concentric ring structure is

maintained for only three cycles. For higher spatial frequencies, the

rectangular structure inherent in the raster scan format is evident, with

eight symmetry axes apparent.

These phenomena are stressed because the experimenter must determine the

best format in which to work, in consideration of the images to be investi-

gated. In preliminary evaluations, the presence of artifacts of sampling

must be determined, so that the number of pixels in the field-of-view may be

set at the lowest value which produces acceptable resolution. As the number

of pixels increases, so does the processing time and storage capacity

requi red.

5-9

570



* a .s A.......*.......- a ... * -- * . .. -....... * * -.

a...,
4,

-a ~
'a-a-a

.a *~

~ *4**

'.4.

'a..

4,..

-a',.

a'

A-4
a'

a'. ~a

a.

- S.,
a.

~'a~'.

'N

'-a

a.'2~

a..?

-a',

a'.

-a.
* 'a

a... *~

a. a~
a.

-~ Figure 36. Pictorial Transform Study of a Circular
Brightness Cone, Centered at (0,0)

71

V
********* % ,***~ *.--****. ** *4-



Section 7

CONCLUSION

The purpose of this document is to serve as a tutorial for the experimenter

preparing to use the VIPER facility for image processing using Fourier

transform techniques. A considerable library of image transform data is

presented for study by the experimenter, with the conviction that an under-

standing of the simple shapes presented will assist in the evaluation of

more realistic images and transforms.

The facility staff can, of course, assist the new experimenter in

understanding the limitations imposed by the apparatus from the input sen-

sors to the various output formats. In general, however, the experimenter

must recognize valid results, and be able to interpret their physical

significance.
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